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Abstract 

Important design parameters of E-beam controlled 
discharges to be used as switches are the ratio of 
discharge current to E-beam current (current 
gain), the discharge current density and the 
discharge voltage. Measurements of these 
parameters as a function of E-beam current are 
presented and compared to theoretical predictions. 
These measurements also allow extrapolation to 
higher E-beam or discharge current densities. 
The influence of added attaching gases is 
considered also. Gases which have an attachment 
coefficient rapidly increasing with electric field 
have been tested. While the basic effect has been 
verified, the range of electric fields over which 
it occurs seems to be limited. 

Introduction 

At the 3rd pulse power conference, it was shown 
(1) that using a small current density (less than 
1.5 mA/cm2 ) E-beam, discharge current densities 
more than 1000 times larger than the E-beam 
current density could be controlled with the 
E-beam. The discharge voltage with atmospheric 
pressure CH4 or a mixture of 60 Torr of argon in 
1 atmosphers of CH was about 1Kv for these 
operating conditio~s. While these low current 
density, high gain conditions may be suitable for 
some applications, it was of interest to extend 
the operating parameters and obtain scaling laws 
for higher current density operation. This also 
would test theoretical predictions for E-beam 
switches (2). Another potential disadvantage of 
the low current density regime is the slow 
switching speed, especially for the"off" phase. 
For most gases considered, the current decay is 
recombination dominated; since the recombination 
coefficient is decreasing strongly with increasing 
electric field, its effect on switch-off speed 
will decrease during the increase of the voltage. 
As has been pointed out already in (1), the 
addition of small amounts of attaching gases can 
make the current decay attachment dominated and 
increase the switch-off speed in accordance with 
the amount of attacher added, but at the expense 
of current gain. The chemical stability of the 
attacher used (SF6) and the fact that due to its 
large attachment coefficient only a very small 
amount could be added, reduced its effect after 
only a few discharges. Recently a number of 
attaching gases were proposed which have the very 
desirable characteristic of an attachment 
coefficient which increase very strongly with 
increasing electric field (3). These and other 
attaching gases have been tested experimentally 
and compared with attachment coefficients measured 
by other methods. 

Experiment 

The E-beam used is the same described previously 
(1), except that the maximum beam current density 
was raised to 20 mA/cm 2 and the switch-off time 
was reduced to less than 10-6 sec. The beam 
aperture was 5 X 15 em and the energy 175KeV. The 
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discharge section and flow loop also remained 
unchanged; the electrode distance could be varied 
very accurately with a stepping motor driven 
micrometer from 0 to more than 3 em. The 
discharge circuit again consisted of a 1 
microfared storage capacitor and a 4 Ohm load 
resistor, if used. Data was collected with a 
waveform analyzer. 

Voltage and Current Scaling 

Operating parameters for electron beam controlled 
switches have been computed, based on gas 
transport calculafions (2). We want to compare 
these calculations with experimental results and 
also extend the scaling to include attachment. 
The parameters of interests are the switch current 
gain (discharge current vs. electron beam current) 
and the discharge or switch voltage for the "on" 
condition. 

These parameters of course also depend on gas 
pressure and electrode distance, which are mainly 
determined by the required hold-off voltage. 
Another parameter, which may set a lower limit on 
the electron beam current is the required rise 
time of the "on" phase of the switch. In the 
gases considered and with the operating conditions 
selected, the loss processes are dominated by 
recombination, then the discharge electron density 
is governed by the well known relation 

ne = ~ ! 
where S is the source stre~gth (number of 
electrons generated per cm 3 per sec) and~ is 
the recombination coefficient (cm3 sec-1). 

If an attaching gas is added, this equation is 
modified to 

ne v ~ +(~r- ~ 
where V is the attachment frequency (sec- 1) , 
and, ifaattachment dominated, ne becomes a 
linear function of the source strength: 

s 
Ya 

For the parameter range of interest, these rela­
tions are illustrated in fig. 1. At very large 
source strength, the electron density for a gas 
mixture with attacher again becomes recombination 
dominated. In order to check these relations 
experimentally, the discharge has to be operated 
at constant voltage such that the variation of the 
electron drift velocity with electric field is 
eliminated and the discharge current is 
proportional to ne. In fig. 2 the data for an 
E-beam current density range of 0.7- 23 mA/cm 2 

(before the foil) for a discharge voltage of 2kV 
is shown; a fitted curve, representing the square 
root relationship of ne and S, has been added. 
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Note that at very lo~1 E-beam current densities 
cathode sheath effects tend to lower the discharge 
current. Also shown is the data for an added 
attaching gas (18 Torr of CF4 added to CH4, 
total pressure 1 atmosphere). For very low 
E-beam current densities again cathode sheath 
effects mask the relationship, but for the range 
of 2-6 mA/cm2 (before the foil) the relation of 
discharge current to E-Beam current is almost 
linear and for higher current densities again 
f~l~o~s the recombination dominated curve. Simply 
d1v1d1ng by the E-beam current (adjusted for 45% 
foil transmission), we obtain the data for current 
gain. Extrapolating the experimental data, at a 
discharge current density of 10A/cm2, a postfoil 
E-beam current density of .06A/cm2 is required 
(current gain 167). 

Another important scaling parameter is the voltage 
drop across the switch as a function of switch 
current density. Again considering a 
recombination dominated discharge, we have to 
include the dependence of both recombination 
coefficient and electron drift velocity on the 
electric field 

where jd = 
vd 

E/N = 

discharge current density 
electron drift velocity 
reduced electric field 
(N: neutral density) 

Using E or the discharge voltage as the 
independentvariable, the source term S and with it 
the E-beam current density can be computed with 
the discharge current as parameter and using the 
transport data calculated by L. Kline (2). From 
previous experiments, the recombination 
coefficient was found to be ten times the original 
data (1) and this is included in this 
computation. In fig. 3 the computed data is 
compared with experimental data for a discharge 
current density of 0.33 A/cm2. The foil 
transmission of the E-beam was assumed to be 45%, 
a value which is probably somewhat high for the 
E-beam used. The experimental discharge voltage 
is almost a factor of three larger than the 
theoretical voltage. To assess the cathode fall 
voltage, not considered in this simple theory, 
each measurement was repeated with different 
electrode distances keeping the discha~ge current 
constant. Extrapolating the measured discharge 
voltages to zero distance, the cathode fall 
voltage for each point was obtained. As shown in 
fig. 3, when these cathode fall voltage values are 
subtracted from the measured discharges voltages, 
a good match to the theoretical curve is obtained. 
Unfortunately, the cathode fall voltage, being a 
function of E-beam current, discharge current, gas 
type and pressure, secondary emission coefficient 
of the cathode material and other parameters is 
rather difficult to calculate (4). Experime~tal 
data for the discharge voltage (minus cathode fall 
voltage) for the gas mixture with attacher show an 
expected increase of the discharge voltage. Fig. 
4 shows the cathode fall voltage as a function of 
E-beam current density for discharge current 
densities of 0.34 and 0.67 A/cm2. The influence of 
discharge current is small, however even at large 
E-beam currents, the cathode fall voltage 
decreases very slowly and for atmospheric 
pressures is considerably larger than the voltage 

38 

~cross 2.2 em of discharge. As already suggested 
1n (5) and {4), a cathode materials with better 
electron emission characteristics can lower this 
voltage. The addition of an attaching gas does 
not seem t~ increas~ th~ cathode fall voltage very 
much, the 1ncrease 1n d1scharge voltage is mostly 
due to an increase of the voltage drop across the 
main volume of the discharge. 

Effect of attaching gases on decay time 

When the E-beam ionized discharge is used as a 
switch, on switching off, the voltage across the 
discharge will increase by one or two orders of 
magnitude in most applications considered. For 
gases such as nitrogen or methane, the 
recombination dominated decay will then be very 
long, since the recombination coefficient 
decreases rapidly with increasing electric field. 
Several attaching gases, including some which were 
suggested for their rapidly increasing attachment 
rate with electric field (3), were tested. Fig. 5 
shows results for nitrogen at a discharge voltage 
of 2KV and an E-beam current density of 5mA/cm2 
(before the foil). In methane, fig.6, (same 
E-beam current density and discharge voltage) the 
current decay is inherently faster, due to the 
higher recombination coefficient. Note that with 
a loss of only about 30% in discharge current the 
added attaching gases reduce the decay time (90% 
to 10% amplitude) to less than 50% of that of 
pure me~hane, but even more effectively remove the 
l~ng ta1l of the recombination dominated decay. 
F1g. 7 shows a comparison of the discharge current 
decay at two different discharge voltage for pure 
methane and for methane with c2F6 added. As 

expected, the methane decay is slower at the 
higher voltage, however with the attaching gas 
added, the trend is reversed. In the experiments 
however, this increase in attachment rate was 
found only over a limited range of voltages at 
higher discharge voltage the attachment rat~ would 
decrease. The reasons for this at present are not 
clear; if t~e attaching gas dissociates, it could 
form F2, wh1ch has a much higher attachment 
coefficient but which decreases with increasing 
electric field. 

Conclusions 

It was shown that the simple model for the E-beam 
ionized discharge describes the behavior of the 
discharge current adequately. However, available 
transport data will allow calculation of the 
discharge voltage only when experimental values 
for the cathode fall voltage are included. The 
c~thode fall voltage is not negligible even at 
h1gh E-beam currents but could possibly be lowered 
with special treatment of the cathode material. 
The E-beam controlled discharge then can be scaled 
over a wide range of discharge current densities. 
Current decay times can be lowered by adding 
attaching gases, but the increase of attachment 
rate with increasing electric field has been 
observed over a limited range only. 
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FIG 2. DISCHARGE CURRENT AND CURRENT GAIN AS 
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VOLTAGE 2 kV, DISCHARGE AREA 75 em . E-BEAM 
CURRENT MEASURED BEFORE THE FOIL, TRANSMISSION 
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FIG 3. DISCHARGE VOLTAGE AT AN ELECTRODE SPACING 
OF 2.2 em AS FUNCTION OF E-BEAM CURRENT DENSITY 
(AFTER FOIL) 
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FIG 5. CURRENT DECAYS FOR NITROGEN AND NITROGEN 
WITH ADDED ATTACHING GASES. 
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FIG 6. CURRENT DECAYS FQR METHANE AND METHANE 
WITH ADDED ATTACHING GA~ES. 
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FIG 7. CURRENT DECAYS (NORMALIZED AMPLITUDES) 
FOR METHANE AND METHANE WITH AN ATTACHING GAS, 
DISCHARGE VOLTAGE PARAMETER (ELECTRODE 
DISTANCE 2.2 em). 


